Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry
نویسندگان
چکیده
Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s). A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.
منابع مشابه
Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum.
Azadinium spinosum (Elbrächter and Tillmann), a small marine dinoflagellate, has been recently described as a de novo producer of azaspiracid-1 and -2 (AZA1 and -2) diarrhoeic toxins. A culture of A. spinosum was established in our laboratory and optimised for pilot-scale production of this organism, to evaluate and understand AZA1 and -2 accumulation and biotransformation in blue mussels (Myti...
متن کاملA neurotoxic peripherin splice variant in a mouse model of ALS
Peripherin, a neuronal intermediate filament (nIF) protein found associated with pathological aggregates in motor neurons of patients with amyotrophic lateral sclerosis (ALS) and of transgenic mice overexpressing mutant superoxide dismutase-1 (SOD1G37R), induces the selective degeneration of motor neurons when overexpressed in transgenic mice. Mouse peripherin is unique compared with other nIF ...
متن کاملProduction and Isolation of Azaspiracid-1 and -2 from Azadinium spinosum Culture in Pilot Scale Photobioreactors
Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to eval...
متن کاملDiarrhetic Shellfish Toxins and Other Lipophilic Toxins of Human Health Concern in Washington State
The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine m...
متن کاملAzaspiracid-1 inhibits bioelectrical activity of spinal cord neuronal networks.
Azaspiracid-1 (AZA-1) is a recently identified phycotoxin that accumulates in molluscs and can cause severe human intoxications. For this study, we utilized murine spinal cord and frontal cortex neuronal networks grown over 64 channel microelectrode arrays (MEAs) to gain insights into the mechanism of action of AZA-1 on neuronal cells. Extracellular recordings of spontaneous action potentials w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2015